
 1

Language Processing Seminar Dr. Roni Katzir May 1st, 2012

Implementation of a Cubic-Time Parser for
Tree-Insertion Grammar in Python

By Tomer Filiba

Introduction
The purpose of this work is to implement a parser for Tree Insertion Grammar
(TIG), based on an algorithm and analysis found in [SW94]. Tree Insertion
Grammar is a formalism that branched out of Tree Adjoining Grammar (TAG)
[Joshi75]; the fundamental idea in both is that grammar rules are expressed as a
set of elementary trees, instead of the "linear" production rules of Context Free
Grammar (CFG). These elementary trees are then embedded into each other to
form larger trees, until they cover the entire input.

T T

T + T+a

T

T + T+

a T + T+

a a

T T

T + T+a

T

T + T+

a T + T+

a a
Figure 1: Substitution of two elementary initial trees

TIG and TAG combine trees using two operations: substitution and adjunction.
Substitution takes a non-terminal leaf L of one tree and replaces it with a tree
whose root is also L. This mechanism is demonstrated in the figure above, and is
very similar to the way production rules are applied in CFG. For instance, the two
trees above are equivalent to the following minimal CFG: T  a | T + T.

Adjunction, on the other hand, is more powerful. Conceptually, it "rips open" an
existing node in a derivation tree and replaces it with a sub-tree. The contents of
the ripped node are then "pushed down" onto a special leaf node of the sub-
tree, called the foot node (marked by an asterisk in the following diagrams). The
process is demonstrated in the following diagram.

 2

NNP

D N

a

N

dog N* PP

NP

France

P

from

NP

NP

D N

a dog

NP

D N

a N PP

P

from

NP

France

dog

Figure 2: Adjunction of elementary trees

For instance, when parsing an NP such as "a dog from France", we first build
[NP a dog], and then perform adjunction on it with [PP from France] to form the
larger NP shown in the diagram above. The node that was "ripped open" is
highlighted in pink.

Elementary trees divide into two types: initial and auxiliary, the difference being
auxiliary trees contain foot nodes while initial trees do not. Both formalisms
require exactly one foot node in each auxiliary tree; however, while TAG allows
the foot node to be any leaf node, TIG requires that it would be either the
rightmost or leftmost leaf of the tree (ignoring empty  productions that may
occur to the right/left of the foot). This virtually minor difference between the
two formalisms has a strong impact on their expressive power: while TAGs
generate Mildly-Context-Sensitive languages (as defined in [VW94]), TIGs only
generate Context-Free languages (CFLs being a subset of MCSL, of course). In
essence, adjunction in TAG allows two-sided wrapping of one tree by another,
while adjunction in TIG allows only one-sided embedding. The equivalence of
TIGs and CFGs is given as a theorem in [SW94].

Figure 3: Two-sided wrapping (left) as opposed to one-sided embedding (right)

 3

If CFG and TIG possess the same expressive power, why is the latter of any
special interest? The answer has two parts: first, TIG is a more "natural" way to
construct grammars for natural languages; it is easier to express long-spanning
dependencies this way, where in CFG one would have to add numerous
production rules to "propagate" the dependency. Also, according to [SW94], it
tends to produce considerably smaller grammars than the equivalent CFGs
(elaborate comparison is given at the end of their paper).

Second, it enables strong lexicalization of CFG while preserving the parse trees.
This means that a CFG can be transformed into an equivalent TIG, producing the
same trees, but in a way that each elementary tree is anchored by a lexical item
(i.e., each tree has a terminal leaf node). It is generally impossible to lexicalize
the production rules of CFG while preserving the parse-tree structure, as
demonstrated by grammars like S  S S | a; using TIG, this task proves
feasible.

Lexicalization is a desired feature of grammars, since it means each
production/tree must "consumes" at least one input token, so that the number
of parsing trees is bounded; this also entails that every lexicalized grammar is
finitely-ambiguous. These two properties are required for the meaningful
extraction of derivation trees form a grammar.

Schabes and Waters go to great lengths to prove that TIG is indeed equivalent to
CFG in power and construct a method for converting finitely-ambiguous CFGs
into equivalent lexicalized TIGs; however, lexicalization is beyond the scope of
this work, and we constrain ourselves to parsing. Since TIG is a special case of
TAG, a general TAG parser will handle them properly, but this will require a
parsing time of O(n6) [JS97], while alternative CFG parsers (CYK, Earley) require
only O(n3) time.

The Algorithm
In their paper, Schabes and Waters describe an O(n3) Earley-style recognizer for
TIG, given as a set of inference rules (instead of the more conventional
pseudocode). Like [Earley70], this algorithm uses a set called the chart
(borrowing from Earley, even though it does not consist of columns), into which
intermediate parsing states are inserted; the chart begins empty and fills as the
algorithm progresses. It is important to note that the chart cannot contain
duplicates, and that it is monotonically non-decreasing in size during the entire
run of the algorithm.

 4

The states of the chart are 4-tuples in the form <tree, dot, i, j>, where
tree is an elementary tree (or a part of one), dot is the index of the node in the
tree we've reached (only immediate children of the root are considered), and i
and j are indexes representing the span of input tokens that this state covers,
ranging from 0 to n (n being the length of the input).

Initially, all states of the form <S•,0,0> are inserted into the chart, where
S is an initial tree whose root is the start symbol. Next, rules (2)-(12) are
invoked so long as the chart keeps growing, and when it reaches a stable size,
the occurrence of a state of the form <S•,0,n> in the chart (n being the
length of the input and S being an initial tree), marks acceptance of the
recognizer.

The inference rules of the algorithm are given below:

Figure 4: Inference rules of the Earley-style TIG recognizer, taken from [SW94]

 5

 The inference rules (2)-(12) can be grouped into 4 groups:

 Scanning – the rules (4)-(6) attempt to match the current input token
with the terminal that the current state expects. If the token is matched,
a new state is added, whose dot is advanced. Note that unlike Earley, -
productions are handled inherently.

 Substitution – the rules (7)-(8) look for states waiting for a sub-tree,
while a state with the required sub-tree exists in the chart. If so, they add
a new state where the expected sub-tree has been matched.

 Subtree-Traversal – the rules (9)-(10) look for a state whose next
production is a sub-tree, and add a new state to the chart that's
expecting this sub-tree.

 Adjunction – the rules (2)-(3) and (11)-(12) handle left- and right-
adjunction respectively. They basically look for an auxiliary tree and state
that is at a point where adjunction may apply, and "predict" new states
where the adjunction might have taken place.

Analysis

The correctness of the algorithm outlined in the paper is somewhat intuitive –
the authors define a "correctness condition" that must hold, and because the
algorithm is expressed as inference rules, they make little effort to show that
each state added to the chart satisfies this condition.

The computational bounds (worst case) of the algorithm are O(|G|∙n2) for space
and O(|G|2∙n3) for time, where |G| is the size of the grammar and n is the length
of the input. The exact definition of "grammar size" is quite complicated, but it's
constant nonetheless. The space is bound by the number of possible different
chart states: there are n2 options for i and j, and |G| combinations for dotted
trees (the dot ranges from 0 to the width of the widest sub-tree, a constant of
the grammar).

The analysis of the time complexity is as follows: the completion rules ((3), (8),
(10) and (12)) are the most complex ones, as they apply to pairs of chart states:
there are O(|G|) possibilities for each of the two trees, thus O(|G|2), and O(n3)
combinations for i, j and k. Note that we only consider adjacent states (i.e.,
state1.j = state2.i), so there are only 3 indexes involved, instead of 4.

 6

The Implementation

From Inference Rules to Procedural Code

The authors claim they've developed a deductive parser which operates directly
on such inference rules; however, I must admit that I found their notation very
confusing and hard to understand at first. It also tends to hide the complexity
involved, as each new variable in an inference rule means an implicit nested for-
loop over the entire chart.

Here follows an interpretation of the inference rules as procedural pseudocode;
this is only a sketch, of course, leaving out most of the details:

procedure recognize(G, tokens)
 chart = {<S•,0,0> | S  InitTrees(G) and S = StartSymbol(G)}

 while chart keeps growing:
 for each state st in chart:
 apply_inference_rules_2_to_12(G, chart, st, tokens)

 for each state st in chart:
 if st = <S•,0,len(tokens)> and S  InitTrees(G):
 return True
 return False

From Recognizer to Parser

Another gem of the paper was the statement "… the algorithm is a recognizer.
However, it can be straight-forwardly converted to parser by keeping track of the
reasons why states are added to the chart".

This may have been straight-forward to the authors, but it wasn't the case for
me. Adding back-pointers to the chart states increased the number of states
exponentially (because two states that were previously considered identical may
now derive from different parents, and are thus distinct). Associating with each
state a list of parents also proved futile: since the algorithm operates on the
entire chart with inference rules (instead of progressing in "columns" as in
Earley), there is no notion of "time" in the process; state X may cause the
inference of state Y, and this state Y may later cause the inference of state X.
Thus a list of parents is bound to have cycles, and attempting to back-track in
this list is not possible.

On top of this "straight-forwardness", there's also an inherent problem with the
way the algorithm works: the chart was designed for recognition, but it looses
some information required to reconstruct adjunction.

 7

Consider the parsing of the following simple NP, "the tasty banana", according to
these elementary trees:

N

banana

NP

D N

the

N

N*Adj

tasty
Figure 5: A simple grammar for "the tasty banana"

After algorithm is run, the chart will contain (listing relevant states only):

Tree Span (i:j) Inferred by rule

NP•D N 0:0 Init (1)

D•the 0:0 Subtree (9)

Dthe• 0:1 Scan (4)

NPD •N 0:1 Subtree (10)

N•banana 1:1 Subst (7)

N•Adj N* 1:1 LeftAdj (2)

Adj•tasty 1:1 Subtree (9)

Adjtasty• 1:2 Scan (4)

NAdj •N* 1:2 Subtree (10)

NAdj N*• 1:2 Scan (6)

N•banana 1:2 LeftAdj (3)

Nbanana• 1:3 Scan (4)

NPD N• 0:3 Subst (8)

Figure 6: The chart after the parsing of "the tasty banana"

The matching state is of course the last one, which represents the full tree.
However, tracing back we see that D matched "the" (spanning 0:1), while N
matched "banana" (spanning 1:3) – meaning a single lexical item spans two
input tokens. This is the result of the left-adjunction rule (3), which neglects the
reason why <N•banana,1,2> is added to the chart: we would have wanted
it to add <NAdj("tasty") •N("banana"),1,2>, but this is neither an

 8

elementary tree nor a part of one. Adding such new states to the chart would
break the time and space bounds entirely.

In lack of any better solution, I resorted to using this method: whenever
substitution or adjunction was performed, a modified copy of the tree (where
the operation was carried out) was created and added to the chart as a new
state.

According to the analysis, the number of states in the chart is O(|G|∙n2), and it
remains so after this change as well. However, once we add all intermediate
derivation trees as states in the chart, |G| is no longer of constant size. In fact, it
becomes unbound in the general case, and the length of the input becomes
negligible; a parsing time of O(|G|2∙n3) becomes impractical.

Tree Builder Combinators

Ultimately, after three weeks without progress, I've found a solution I call Tree-
Builder Combinators. As keeping back-pointers proved futile and generating all
intermediate parse trees proved impractical, I realized I should associate with
each chart state a set of "tree builders"; these are basically functions that
generate the parse trees on demand. The use of combinators (functions with no
free variables) instead of general functions is important, as it allows us to
eliminate duplicates: we can define equivalence for tuples such as
<combinator, arg1, arg2>, which we cannot do for "black box" functions.

The tree-builder combinators are added to the chart alongside with their
arguments. It is important to note that the number of states in the chart
remains unaltered; however, each state now holds a set of (unique) tree
builders. Also, during parsing, tree builders are only added to the chart (but
never invoked), so this change will not affect the time complexity.

In the implementation, I used four such combinators; the most complex ones
bind two arguments, which are chart states, so in total, there could be at most
O(4∙(|G|∙n2)∙(|G|∙n2)) = O(|G|2∙n4) tree builders associated with each chart
state; in practice, of course, this number is very small. The number of states in
the chart is O(|G|∙n2) so seemingly, the memory-footprint of the chart is
O(|G|3∙n6).

This would of course affect the time complexity as well, as we could theoretically
add each such tree builder. However, this upper bound is very loose. In fact,
since exactly one tree builder is added each time a state is added to the chart,
the total number of tree builders is bound by the number of times we add

 9

states. As shown in the analysis, the number of additions is bound by O(|G|2∙n3),
and therefore the space requirements of the table are also bound by O(|G|2∙n3).

Extracting the parse trees from the chart is trivial now, as we just need to run
the recognizer, find the matching states, and invoke their tree builders. These
would, in turn, invoke the next level's tree builders, and so on; at the end of
each such chain, a complete derivation tree is formed. We cannot discuss the
computational bounds of extracting the parse trees, of course, as their number
might be unbound.

I also employed memoization during the process of tree extraction, so that once
a state's subtrees are computed, they are stored in the chart; future attempts to
extract the subtrees of this state are an O(1) operation. This works much like
memoization in a Fibonacci number generator, where it lowers the
computational complexity from (n) to (n). Here, memoization ensures that
each tree is extracted in amortized linear time.

References
 [Earley70] – Jay Earley; 1970. An Efficient Context-Free Parsing Algorithm

 [JLT75] – Aravind K. Joshi, L. S. Levy, M. Takahashi; 1975. Tree Adjunct
Grammars

 [SW94] – Yves Schabes, Richard C. Waters; 1994. Tree Insertion
Grammar: A Cubic-Time Parsable Formalism that Lexicalizes Context-Free
Grammar without Changing the Trees Produced

 [VW94] – K. Vijay-Shanker, David J. Weir; 1994. The Equivalence of Four
Extensions of Context-Free Grammars

 [JS97] – Aravind K. Joshi, Yves Schabes; 1997. Tree-Adjoining Grammars

 10

Appendix A: The Distribution
Appendix C includes the code of the parser and tree extraction. Note that 230
lines having to do with the formalism itself are omitted.

Attached are the full parser code and two tests. The first test defines an
intentionally ambiguous grammar for (a+a+…+a) and counts the number of
generated parse trees. If all goes well, it should generate the Catalan sequence,
as a form of sanity-check for the parser.

 11

The second test defines a mock grammar for English and prints out the parse
trees of 12 complex-adjunction sentences, 2 of which are ambiguous. Brought
here is a sample parse tree generated for "some colorless green ideas sleep
furiously":
S
 NP
 D
 some
 N
 Adj
 colorless
 N
 Adj
 green
 N
 ideas
 VP
 VP
 V
 sleep
 Adv
 furiously

Or graphically:

S

NP VP

VP

V

Adv

sleep

furiously

D N

Adj Nsome

colorless Adj N

ideasgreen

S

NP VP

VP

V

Adv

sleep

furiously

D N

Adj Nsome

colorless Adj N

ideasgreen

 12

Appendix B: Python from Java Perspective
Python is an object-oriented, garbage-collected, dynamically-typed (duck-typed)
interpreted language that makes use of indentation for code-level nesting and
borrows numerous features from functional languages. This is a short
introduction to Python from a Java perspective.

Syntax
if cond:
 then-code
[elif cond:
 then-code]
[else:
 else-code]

for var in coll:
 loop-code

while cond:
 loop-code

def name (args…):
 func-body

"pass" is a keyword that denotes an empty body (required because of the
indentation-based nature of the syntax)
class name (bases…):
 [class-level attributes]

 def name (self, args…):
 method-body

Note that methods in Python take an explicit "self" parameter (AKA "this"),
which represents the method's instance.
[1,2,3]  list (mutable)
(1,2,3)  tuple (immutable)
{1,2,3}  set (no duplicates, quick lookup)
{1:2, 3:4}  dictionary (AKA "map", quick lookup)
{}  empty dictionary (not set!)
set([])  empty set
[x for x in coll [if <cond>]]

List comprehension, like set-builder notation, but the result is ordered and may
contain duplicates. For instance,

 >>> [x % 3 for x in range(10) if x > 4]
 [2, 0, 1, 2, 0]
(x for x in coll [if <cond>])

Generator expressions, like list-comprehensions, but done lazily, i.e., builds a
generator (iterator) object that produces values only when consumed.

 >>> (x * 2 for x in range(10) if x % 3 == 0)
 <generator object <genexpr> at 0x0157A878>
 >>> sum(x * 2 for x in range(10) if x % 3 == 0)
 36

 13

Semantics

Python relies on special methods (in the form of __xxx__) to implement
language-level features like operators (__add__) and other interfaces
(__hash__, __eq__, __str__, …).

Python classes behave like functions; "calling" a class creates an instance of it,
and any arguments given are passed to the special method __init__, which is
used to initialize the instance. Objects are much like dictionaries; all objects start
"empty" and attributes are added to them at runtime.
>>> class C(object):
... def __init__(self, a, b):
... self.my_name = a + b
...
>>> x = C("foo", "bar")
>>> x
<__main__.C object at 0x01589390>
>>> x.my_name
'foobar'
>>> x.your_name = "spam"

Doc-strings may be placed as the first code-element in functions and classes,
where they serve for documentation and are retrievable by the interpreter.
>>> def foo(a,b):
... "I am a docstring. This function just returns 5"
... return 5
...
>>> help(foo)
foo(a, b)
 I am a docstring. This function just returns 5

Functions can list their arguments explicitly, but they might also accept
"varargs", which means they can take any number of arguments. For instance
>>> def foo(a, b, *args):
... print a, b, args
...
>>> foo(1,2,3,4,5,6)
1 2 (3, 4, 5, 6)

The occurrence of yield inside a function turns it into a generator which could
be consumed by a for-loop
>>> def f():
... yield 1
... yield 2
... yield 3
...
>>> list(f())
[1, 2, 3]

 14

Appendix C: Parser Code
#==
Chart and Chart States
#==
class State(object):
 """
 The chart state. This is in essence a 4-tuple <tree, dot, i, j>, with some
 helper methods
 """
 def __init__(self, tree, dot, i, j):
 self.tree = tree
 self.dot = dot
 self.i = i
 self.j = j
 self.index = None
 self._hash = None
 def __str__(self):
 prod = ["%s%s" % (c, SYM_DOWN_ARROW)
 if isinstance(c, NonTerminal) else str(c)
 for c in self.tree.children]
 prod.insert(self.dot, SYM_DOT)
 return "%s %s %s, %r:%r" % (self.tree.root, SYM_RIGHT_ARRROW,
 " ".join(prod), self.i, self.j)
 def __eq__(self, other):
 return (self.tree, self.dot, self.i, self.j) == (
 other.tree, other.dot, other.i, other.j)
 def __ne__(self, other):
 return not (self == other)
 def __hash__(self):
 if self._hash is None:
 self._hash = hash((self.tree, self.dot, self.i, self.j))
 return self._hash
 def is_complete(self):
 """
 Returns True iff the dot is past the last child (thus the state
 is complete)
 """
 return self.dot >= len(self.tree.children)
 def next(self):
 """
 Return the next (first-level only) production of this tree,
 or None if we've reached the end
 """
 if self.is_complete():
 return None
 return self.tree.children[self.dot]

 15

class ChartItem(object):
 """
 A helper object, associated with each chart state, that holds the reasons
 for adding this state and the state's subtree builders
 """
 UNPROCESSED = 1
 PROCESSING = 2
 PROCESSED = 3

 def __init__(self, reason, subtreefunc):
 self.reasons = {reason}
 self.subtreefuncs = {subtreefunc}
 self.subtrees = set()
 # `stage` serves as a marker for get_subtrees()
 self.stage = self.UNPROCESSED

 def add(self, reason, subtreefunc):
 """
 Adds a reason and a subtree-builder to this chart item
 """
 self.reasons.add(reason)
 self.subtreefuncs.add(subtreefunc)

class Chart(object):
 """
 Represents the parser chart. It comprises of states (without duplicates),
 but it preserves the ordering relations for debugging purposes. With each
 state we associates a ChartItem, to hold some extra info.
 States are add()ed to the chart, but they don't actually become part of
 it until commit()ted. This prevents some issues with dictionary iteration.
 """

 def __init__(self):
 self._states = {}
 self._ordered_states = []
 self._changes = []
 def __iter__(self):
 return iter(self._ordered_states)
 def __len__(self):
 return len(self._ordered_states)
 def __getitem__(self, index):
 return self._ordered_states[index]

 def add(self, state, reason, subtreefunc = None, *args):
 """
 Adds a new state to the chart, including the state's reason and
 subtree-builder. Note that it's not actually added to the chart
 until commit() is called
 """
 if subtreefunc is None:
 subtreefunc = BUILD_CONST
 args = (state.tree,)
 self._changes.append((state, reason, (subtreefunc, args)))

 16

 def commit(self):
 """
 commits the changes to the chart -- returns True if the chart
 has grew, False otherwise
 """
 added = False
 while self._changes:
 st, reason, subtreefunc = self._changes.pop(0)
 if st not in self._states:
 st.index = len(self._ordered_states)
 self._ordered_states.append(st)
 self._states[st] = ChartItem(reason, subtreefunc)
 added = True
 else:
 self._states[st].add(reason, subtreefunc)

 return added

 def get_subtrees(self, st):
 """
 Gets the set of subtrees for a given state; this is memoized (cached)
 so once the subtrees of some state have been built,
 future calls are O(1)
 """
 item = self._states[st]
 if item.stage == ChartItem.PROCESSED:
 return item.subtrees
 # make sure we're not accidentally reentrant
 assert item.stage == ChartItem.UNPROCESSED
 item.stage = ChartItem.PROCESSING
 for func, args in item.subtreefuncs:
 item.subtrees.update(func(self, *args))
 item.stage = ChartItem.PROCESSED
 return item.subtrees

 def show(self, only_completed = False):
 """
 Print the chart in a human-readable manner
 """
 for st in self._ordered_states:
 if only_completed and not st.is_complete():
 continue
 print "%3d | %-40s | %s" % (st.index, st,
 " ; ".join(self._states[st].reasons))
 print "-" * 80

 17

#==
Tree extraction combinators:

Whenever we add a new state to the chart, we associate with it a
subtree-builder, which serves us later (we get_subtrees() is called).
These builders combine partial trees to form bigger ones, according to
the rules of the grammar
#==
def BUILD_CONST(chart, t):
 return [t]

def BUILD_PROPAGATE(chart, st):
 return chart.get_subtrees(st)

def BUILD_SUBSTITUTION(chart, st, st2):
 return [t1.deep_substitute(st.dot, t2)
 for t1 in chart.get_subtrees(st) for t2 in chart.get_subtrees(st2)]

def BUILD_AUX(chart, st, st2):
 return [t2.substitute_foot(t1)
 for t1 in chart.get_subtrees(st) for t2 in chart.get_subtrees(st2)]

#==
Parser
#==
def handle_left_adj(grammar, chart, st):
 """
 handles the case of left-adjunction rules (2) and (3)
 """
 if st.dot != 0:
 return

 # (2)
 for t in grammar.get_left_aux_trees_for(st.tree.root):
 chart.add(State(t, 0, st.j, st.j), "[2]/%d" % (st.index,))

 # (3)
 for st2 in chart:
 if (st2.tree.type == Tree.LEFT_AUX and st.tree.root == st2.tree.root
 and st.j == st2.i and st2.is_complete()):
 chart.add(State(st.tree, 0, st.i, st2.j),
 "[3]/%d,%d" % (st.index, st2.index),
 BUILD_AUX, st, st2)

 18

def handle_scan(grammar, chart, st, token):
 """
 handles the case of scanning rules (4), (5) and (6)
 """
 prod = st.next()
 if isinstance(prod, str):
 if prod == token:
 # (4)
 chart.add(State(st.tree, st.dot+1, st.i, st.j+1),
 "[4]/%d" % (st.index,),
 BUILD_PROPAGATE, st)
 elif prod == "":
 # (5)
 chart.add(State(st.tree, st.dot+1, st.i, st.j),
 "[5]/%d" % (st.index,),
 BUILD_PROPAGATE, st)
 elif isinstance(prod, Foot):
 # (6)
 chart.add(State(st.tree, st.dot+1, st.i, st.j),
 "[6]/%d" % (st.index,),
 BUILD_PROPAGATE, st)

def handle_substitution(grammar, chart, st):
 """
 handles the case of substitution rules (7) and (8)
 """
 prod = st.next()
 if isinstance(prod, NonTerminal):
 # (7)
 for t in grammar.get_init_trees_for(prod):
 chart.add(State(t, 0, st.j, st.j), "[7]/%d" % (st.index,))

 # (8)
 for st2 in chart:
 if (st2.tree.root == prod and st.j == st2.i and st2.is_complete()
 and st2.tree.type == Tree.INIT_TREE):
 chart.add(State(st.tree, st.dot + 1, st.i, st2.j),
 "[8]/%d,%d" % (st.index, st2.index),
 BUILD_SUBSTITUTION, st, st2)

def handle_subtree_traversal(grammar, chart, st):
 """
 handles the case of subtree-traversal rules (9) and (10)
 """
 prod = st.next()
 if isinstance(prod, Tree):
 # (9)
 chart.add(State(prod, 0, st.j, st.j), "[9]/%d" % (st.index,))

 # (10)
 for st2 in chart:
 if st2.tree == prod and st.j == st2.i and st2.is_complete():
 chart.add(State(st.tree, st.dot + 1, st.i, st2.j),
 "[10]/%d,%d" % (st.index, st2.index),
 BUILD_SUBSTITUTION, st, st2)

 19

def handle_right_adj(grammar, chart, st):
 """
 handles the case of right-adjunction rules (11) and (12)
 """
 if not st.is_complete():
 return

 # (11)
 for t in grammar.get_right_aux_trees_for(st.tree.root):
 chart.add(State(t, 0, st.j, st.j), "[11]/%d" % (st.index,))

 # (12)
 for st2 in chart:
 if (st2.tree.type == Tree.RIGHT_AUX and st2.tree.root == st.tree.root
 and st.j == st2.i and st2.is_complete()):
 chart.add(State(st.tree, len(st.tree.children), st.i, st2.j),
 "[12]/%d,%d" % (st.index, st2.index),
 BUILD_AUX, st, st2)

def parse(grammar, start_symbol, tokens, debug = False):
 """
 The actual parser: it takes a TIG grammar object, a start symbol
 (NonTerminal) of that grammar, and a list of tokens, and returns
 (hopefully) all possible parse trees for them.

 It works by first applying the initialization rule (1),
 then applying rules (2)-(12) for as long as the chart keeps changing,
 and once it's stable, it looks for matching states according to
 acceptance rule (13).

 It then takes all matching states (normally there should be only one),
 extracts the trees of each state, and returns a set of them.

 Note that TIG is assumed to be lexicalized, or at least finitely-ambiguous,
 so we know the number of trees is bounded.

 The parsing is done in O(|G|^2 * n^3), as discussed in the paper,
 and tree extraction is performed in amortized linear time, per each tree.
 """
 if isinstance(tokens, str):
 tokens = tokens.split()
 chart = Chart()
 tokens = list(tokens)
 padded_tokens = [None] + tokens

 # (1)
 for t in grammar.get_init_trees_for(start_symbol):
 chart.add(State(t, 0, 0, 0), "[1]")

 20

 # main loop: run (2)-(12) until no more changes occur
 while True:
 for st in chart:
 handle_left_adj(grammar, chart, st)
 tok = padded_tokens[st.j+1] if st.j+1 < len(padded_tokens) else None
 handle_scan(grammar, chart, st, tok)
 handle_substitution(grammar, chart, st)
 handle_subtree_traversal(grammar, chart, st)
 handle_right_adj(grammar, chart, st)

 if not chart.commit():
 # no more changes, we're done
 break

 # (13)
 matches = [st for st in chart if st.is_complete() and st.i == 0
 and st.j == len(tokens) and st.tree.root == start_symbol
 and st.tree.type == Tree.INIT_TREE]
 if debug:
 chart.show()
 print "Matches:", [st.index for st in matches]
 print

 # fail if no matching state was found
 if not matches:
 raise ParsingError("Grammar does not derive the given sequence")

 # extract trees, drop ones that do not generate the correct token sequence
 trees = set(t for m in matches for t in chart.get_subtrees(m)
 if list(t.leaves()) == tokens)

 # and make sure we didn't lose all trees, for then it's our fault
 assert trees
 return trees

