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Implementation of a Cubic-Time Parser for 
Tree-Insertion Grammar in Python 

By Tomer Filiba 

Introduction 
The purpose of this work is to implement a parser for Tree Insertion Grammar 
(TIG), based on an algorithm and analysis found in [SW94]. Tree Insertion 
Grammar is a formalism that branched out of Tree Adjoining Grammar (TAG) 
[Joshi75]; the fundamental idea in both is that grammar rules are expressed as a 
set of elementary trees, instead of the "linear" production rules of Context Free 
Grammar (CFG). These elementary trees are then embedded into each other to 
form larger trees, until they cover the entire input. 
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Figure 1: Substitution of two elementary initial trees 

 

TIG and TAG combine trees using two operations: substitution and adjunction. 
Substitution takes a non-terminal leaf L of one tree and replaces it with a tree 
whose root is also L. This mechanism is demonstrated in the figure above, and is 
very similar to the way production rules are applied in CFG. For instance, the two 
trees above are equivalent to the following minimal CFG: T  a | T + T. 

Adjunction, on the other hand, is more powerful. Conceptually, it "rips open" an 
existing node in a derivation tree and replaces it with a sub-tree. The contents of 
the ripped node are then "pushed down" onto a special leaf node of the sub-
tree, called the foot node (marked by an asterisk in the following diagrams). The 
process is demonstrated in the following diagram. 
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Figure 2: Adjunction of elementary trees 

 

For instance, when parsing an NP such as "a dog from France", we first build    
[NP a dog], and then perform adjunction on it with [PP from France] to form the 
larger NP shown in the diagram above. The node that was "ripped open" is 
highlighted in pink. 

Elementary trees divide into two types: initial and auxiliary, the difference being 
auxiliary trees contain foot nodes while initial trees do not. Both formalisms 
require exactly one foot node in each auxiliary tree; however, while TAG allows 
the foot node to be any leaf node, TIG requires that it would be either the 
rightmost or leftmost leaf of the tree (ignoring empty  productions that may 
occur to the right/left of the foot). This virtually minor difference between the 
two formalisms has a strong impact on their expressive power: while TAGs 
generate Mildly-Context-Sensitive languages (as defined in [VW94]), TIGs only 
generate Context-Free languages (CFLs being a subset of MCSL, of course). In 
essence, adjunction in TAG allows two-sided wrapping of one tree by another, 
while adjunction in TIG allows only one-sided embedding. The equivalence of 
TIGs and CFGs is given as a theorem in [SW94]. 

 

 
Figure 3: Two-sided wrapping (left) as opposed to one-sided embedding (right) 
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If CFG and TIG possess the same expressive power, why is the latter of any 
special interest? The answer has two parts: first, TIG is a more "natural" way to 
construct grammars for natural languages; it is easier to express long-spanning 
dependencies this way, where in CFG one would have to add numerous 
production rules to "propagate" the dependency. Also, according to [SW94], it 
tends to produce considerably smaller grammars than the equivalent CFGs 
(elaborate comparison is given at the end of their paper).  

Second, it enables strong lexicalization of CFG while preserving the parse trees. 
This means that a CFG can be transformed into an equivalent TIG, producing the 
same trees, but in a way that each elementary tree is anchored by a lexical item 
(i.e., each tree has a terminal leaf node). It is generally impossible to lexicalize 
the production rules of CFG while preserving the parse-tree structure, as 
demonstrated by grammars like S  S S | a; using TIG, this task proves 
feasible.  

Lexicalization is a desired feature of grammars, since it means each 
production/tree must "consumes" at least one input token, so that the number 
of parsing trees is bounded; this also entails that every lexicalized grammar is 
finitely-ambiguous. These two properties are required for the meaningful 
extraction of derivation trees form a grammar. 

Schabes and Waters go to great lengths to prove that TIG is indeed equivalent to 
CFG in power and construct a method for converting finitely-ambiguous CFGs 
into equivalent lexicalized TIGs; however, lexicalization is beyond the scope of 
this work, and we constrain ourselves to parsing. Since TIG is a special case of 
TAG, a general TAG parser will handle them properly, but this will require a 
parsing time of O(n6) [JS97], while alternative CFG parsers (CYK, Earley) require 
only O(n3) time.  

The Algorithm 
In their paper, Schabes and Waters describe an O(n3) Earley-style recognizer for 
TIG, given as a set of inference rules (instead of the more conventional 
pseudocode). Like [Earley70], this algorithm uses a set called the chart 
(borrowing from Earley, even though it does not consist of columns), into which 
intermediate parsing states are inserted; the chart begins empty and fills as the 
algorithm progresses. It is important to note that the chart cannot contain 
duplicates, and that it is monotonically non-decreasing in size during the entire 
run of the algorithm. 
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The states of the chart are 4-tuples in the form <tree, dot, i, j>, where 
tree is an elementary tree (or a part of one), dot is the index of the node in the 
tree we've reached (only immediate children of the root are considered), and i 
and j are indexes representing the span of input tokens that this state covers, 
ranging from 0 to n (n being the length of the input). 

Initially, all states of the form <S•,0,0> are inserted into the chart, where 
S is an initial tree whose root is the start symbol. Next, rules (2)-(12) are 
invoked so long as the chart keeps growing, and when it reaches a stable size, 
the occurrence of a state of the form <S•,0,n> in the chart (n being the 
length of the input and S being an initial tree), marks acceptance of the 
recognizer. 

The inference rules of the algorithm are given below: 

 
Figure 4: Inference rules of the Earley-style TIG recognizer, taken from [SW94] 
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 The inference rules (2)-(12) can be grouped into 4 groups:  

 Scanning – the rules (4)-(6) attempt to match the current input token 
with the terminal that the current state expects. If the token is matched, 
a new state is added, whose dot is advanced. Note that unlike Earley, -
productions are handled inherently. 

 Substitution – the rules (7)-(8) look for states waiting for a sub-tree, 
while a state with the required sub-tree exists in the chart. If so, they add 
a new state where the expected sub-tree has been matched. 

 Subtree-Traversal – the rules (9)-(10) look for a state whose next 
production is a sub-tree, and add a new state to the chart that's 
expecting this sub-tree. 

 Adjunction – the rules (2)-(3) and (11)-(12) handle left- and right-
adjunction respectively. They basically look for an auxiliary tree and state 
that is at a point where adjunction may apply, and "predict" new states 
where the adjunction might have taken place. 

Analysis 

The correctness of the algorithm outlined in the paper is somewhat intuitive – 
the authors define a "correctness condition" that must hold, and because the 
algorithm is expressed as inference rules, they make little effort to show that 
each state added to the chart satisfies this condition.  

The computational bounds (worst case) of the algorithm are O(|G|∙n2) for space 
and O(|G|2∙n3) for time, where |G| is the size of the grammar and n is the length 
of the input. The exact definition of "grammar size" is quite complicated, but it's 
constant nonetheless. The space is bound by the number of possible different 
chart states: there are n2 options for i and j, and |G| combinations for dotted 
trees (the dot ranges from 0 to the width of the widest sub-tree, a constant of 
the grammar).  

The analysis of the time complexity is as follows: the completion rules ((3), (8), 
(10) and (12)) are the most complex ones, as they apply to pairs of chart states: 
there are O(|G|) possibilities for each of the two trees, thus O(|G|2), and O(n3) 
combinations for i, j and k. Note that we only consider adjacent states (i.e., 
state1.j = state2.i), so there are only 3 indexes involved, instead of 4. 
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The Implementation 

From Inference Rules to Procedural Code 

The authors claim they've developed a deductive parser which operates directly 
on such inference rules; however, I must admit that I found their notation very 
confusing and hard to understand at first. It also tends to hide the complexity 
involved, as each new variable in an inference rule means an implicit nested for-
loop over the entire chart.  

Here follows an interpretation of the inference rules as procedural pseudocode; 
this is only a sketch, of course, leaving out most of the details: 

 
procedure recognize(G, tokens) 
    chart = {<S•,0,0> | S  InitTrees(G) and S = StartSymbol(G)} 
 
    while chart keeps growing: 
        for each state st in chart: 
            apply_inference_rules_2_to_12(G, chart, st, tokens) 
 
    for each state st in chart: 
        if st = <S•,0,len(tokens)> and S  InitTrees(G): 
            return True 
    return False 
 

From Recognizer to Parser 

Another gem of the paper was the statement "… the algorithm is a recognizer. 
However, it can be straight-forwardly converted to parser by keeping track of the 
reasons why states are added to the chart".  

This may have been straight-forward to the authors, but it wasn't the case for 
me. Adding back-pointers to the chart states increased the number of states 
exponentially (because two states that were previously considered identical may 
now derive from different parents, and are thus distinct). Associating with each 
state a list of parents also proved futile: since the algorithm operates on the 
entire chart with inference rules (instead of progressing in "columns" as in 
Earley), there is no notion of "time" in the process; state X may cause the 
inference of state Y, and this state Y may later cause the inference of state X. 
Thus a list of parents is bound to have cycles, and attempting to back-track in 
this list is not possible. 

On top of this "straight-forwardness", there's also an inherent problem with the 
way the algorithm works: the chart was designed for recognition, but it looses 
some information required to reconstruct adjunction.  
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Consider the parsing of the following simple NP, "the tasty banana", according to 
these elementary trees: 

N

banana

NP

D N

the

N

N*Adj

tasty  
Figure 5: A simple grammar for "the tasty banana" 

 

After algorithm is run, the chart will contain (listing relevant states only): 

Tree Span (i:j) Inferred by rule 

NP•D N 0:0 Init (1) 

D•the 0:0 Subtree (9) 

Dthe• 0:1 Scan (4) 

NPD •N 0:1 Subtree (10) 

N•banana 1:1 Subst (7) 

N•Adj N* 1:1 LeftAdj (2) 

Adj•tasty 1:1 Subtree (9) 

Adjtasty• 1:2 Scan (4) 

NAdj •N* 1:2 Subtree (10) 

NAdj N*• 1:2 Scan (6) 

N•banana 1:2 LeftAdj (3) 

Nbanana• 1:3 Scan (4) 

NPD N• 0:3 Subst (8) 

Figure 6: The chart after the parsing of "the tasty banana" 

 

The matching state is of course the last one, which represents the full tree. 
However, tracing back we see that D matched "the" (spanning 0:1), while N 
matched "banana" (spanning 1:3) – meaning a single lexical item spans two 
input tokens. This is the result of the left-adjunction rule (3), which neglects the 
reason why <N•banana,1,2> is added to the chart: we would have wanted 
it to add <NAdj("tasty") •N("banana"),1,2>, but this is neither an 
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elementary tree nor a part of one. Adding such new states to the chart would 
break the time and space bounds entirely. 

In lack of any better solution, I resorted to using this method: whenever 
substitution or adjunction was performed, a modified copy of the tree (where 
the operation was carried out) was created and added to the chart as a new 
state.  

According to the analysis, the number of states in the chart is O(|G|∙n2), and it 
remains so after this change as well. However, once we add all intermediate 
derivation trees as states in the chart, |G| is no longer of constant size. In fact, it 
becomes unbound in the general case, and the length of the input becomes 
negligible; a parsing time of O(|G|2∙n3) becomes impractical. 

 

Tree Builder Combinators 

Ultimately, after three weeks without progress, I've found a solution I call Tree-
Builder Combinators. As keeping back-pointers proved futile and generating all 
intermediate parse trees proved impractical, I realized I should associate with 
each chart state a set of "tree builders"; these are basically functions that 
generate the parse trees on demand. The use of combinators (functions with no 
free variables) instead of general functions is important, as it allows us to 
eliminate duplicates: we can define equivalence for tuples such as  
<combinator, arg1, arg2>, which we cannot do for "black box" functions. 

The tree-builder combinators are added to the chart alongside with their 
arguments. It is important to note that the number of states in the chart 
remains unaltered; however, each state now holds a set of (unique) tree 
builders. Also, during parsing, tree builders are only added to the chart (but 
never invoked), so this change will not affect the time complexity. 

In the implementation, I used four such combinators; the most complex ones 
bind two arguments, which are chart states, so in total, there could be at most 
O(4∙(|G|∙n2)∙(|G|∙n2)) = O(|G|2∙n4) tree builders associated with each chart 
state; in practice, of course, this number is very small. The number of states in 
the chart is O(|G|∙n2) so seemingly, the memory-footprint of the chart is 
O(|G|3∙n6).  

This would of course affect the time complexity as well, as we could theoretically 
add each such tree builder. However, this upper bound is very loose. In fact, 
since exactly one tree builder is added each time a state is added to the chart, 
the total number of tree builders is bound by the number of times we add 
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states. As shown in the analysis, the number of additions is bound by O(|G|2∙n3), 
and therefore the space requirements of the table are also bound by O(|G|2∙n3). 

Extracting the parse trees from the chart is trivial now, as we just need to run 
the recognizer, find the matching states, and invoke their tree builders. These 
would, in turn, invoke the next level's tree builders, and so on; at the end of 
each such chain, a complete derivation tree is formed. We cannot discuss the 
computational bounds of extracting the parse trees, of course, as their number 
might be unbound. 

I also employed memoization during the process of tree extraction, so that once 
a state's subtrees are computed, they are stored in the chart; future attempts to 
extract the subtrees of this state are an O(1) operation. This works much like 
memoization in a Fibonacci number generator, where it lowers the 
computational complexity from (n) to (n). Here, memoization ensures that 
each tree is extracted in amortized linear time. 

 

References 
 [Earley70] – Jay Earley; 1970. An Efficient Context-Free Parsing Algorithm 

 [JLT75] – Aravind K. Joshi, L. S. Levy, M. Takahashi; 1975. Tree Adjunct 
Grammars 

 [SW94] – Yves Schabes, Richard C. Waters; 1994. Tree Insertion 
Grammar: A Cubic-Time Parsable Formalism that Lexicalizes Context-Free 
Grammar without Changing the Trees Produced 

 [VW94] – K. Vijay-Shanker, David J. Weir; 1994. The Equivalence of Four 
Extensions of Context-Free Grammars 

 [JS97] – Aravind K. Joshi, Yves Schabes; 1997. Tree-Adjoining Grammars 

 



 10 

Appendix A: The Distribution 
Appendix C includes the code of the parser and tree extraction. Note that 230 
lines having to do with the formalism itself are omitted.  

Attached are the full parser code and two tests. The first test defines an 
intentionally ambiguous grammar for (a+a+…+a) and counts the number of 
generated parse trees. If all goes well, it should generate the Catalan sequence, 
as a form of sanity-check for the parser. 
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The second test defines a mock grammar for English and prints out the parse 
trees of 12 complex-adjunction sentences, 2 of which are ambiguous. Brought 
here is a sample parse tree generated for "some colorless green ideas sleep 
furiously": 
S 
   NP 
      D 
         some 
      N 
         Adj 
            colorless 
         N 
            Adj 
               green 
            N 
               ideas 
   VP 
      VP 
         V 
            sleep 
      Adv 
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Or graphically: 
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Appendix B: Python from Java Perspective 
Python is an object-oriented, garbage-collected, dynamically-typed (duck-typed) 
interpreted language that makes use of indentation for code-level nesting and 
borrows numerous features from functional languages. This is a short 
introduction to Python from a Java perspective. 

Syntax 
if cond: 
    then-code 
[elif cond: 
    then-code] 
[else: 
    else-code] 

for var in coll: 
    loop-code 

while cond: 
    loop-code 

def name ( args… ): 
    func-body 

"pass" is a keyword that denotes an empty body (required because of the 
indentation-based nature of the syntax) 
class name ( bases… ): 
    [class-level attributes] 
 
    def name (self, args…): 
        method-body 

Note that methods in Python take an explicit "self" parameter (AKA "this"), 
which represents the method's instance.  
[1,2,3]       list (mutable) 
(1,2,3)       tuple (immutable) 
{1,2,3}       set (no duplicates, quick lookup) 
{1:2, 3:4}    dictionary (AKA "map", quick lookup) 
{}            empty dictionary (not set!) 
set([])       empty set 
[x for x in coll [if <cond>]] 

List comprehension, like set-builder notation, but the result is ordered and may 
contain duplicates. For instance, 
 
    >>> [x % 3 for x in range(10) if x > 4] 
    [2, 0, 1, 2, 0] 
(x for x in coll [if <cond>]) 

Generator expressions, like list-comprehensions, but done lazily, i.e., builds a 
generator (iterator) object that produces values only when consumed. 
 
    >>> (x * 2 for x in range(10) if x % 3 == 0) 
    <generator object <genexpr> at 0x0157A878> 
    >>> sum(x * 2 for x in range(10) if x % 3 == 0) 
    36 
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Semantics 

Python relies on special methods (in the form of __xxx__) to implement 
language-level features like operators (__add__) and other interfaces 
(__hash__, __eq__, __str__, …).  

Python classes behave like functions; "calling" a class creates an instance of it, 
and any arguments given are passed to the special method __init__, which is 
used to initialize the instance. Objects are much like dictionaries; all objects start 
"empty" and attributes are added to them at runtime. 
>>> class C(object): 
...     def __init__(self, a, b): 
...         self.my_name = a + b 
... 
>>> x = C("foo", "bar") 
>>> x 
<__main__.C object at 0x01589390> 
>>> x.my_name 
'foobar' 
>>> x.your_name = "spam" 

Doc-strings may be placed as the first code-element in functions and classes, 
where they serve for documentation and are retrievable by the interpreter.  
>>> def foo(a,b): 
...     "I am a docstring. This function just returns 5" 
...     return 5 
... 
>>> help(foo) 
foo(a, b) 
    I am a docstring. This function just returns 5 

Functions can list their arguments explicitly, but they might also accept 
"varargs", which means they can take any number of arguments. For instance 
>>> def foo(a, b, *args): 
...     print a, b, args 
... 
>>> foo(1,2,3,4,5,6) 
1 2 (3, 4, 5, 6) 

The occurrence of yield inside a function turns it into a generator which could 
be consumed by a for-loop  
>>> def f(): 
...     yield 1 
...     yield 2 
...     yield 3 
... 
>>> list(f()) 
[1, 2, 3] 



 14 

Appendix C: Parser Code 
#============================================================================== 
# Chart and Chart States 
#============================================================================== 
class State(object): 
    """ 
    The chart state. This is in essence a 4-tuple <tree, dot, i, j>, with some  
    helper methods 
    """ 
    def __init__(self, tree, dot, i, j): 
        self.tree = tree 
        self.dot = dot 
        self.i = i 
        self.j = j 
        self.index = None 
        self._hash = None 
    def __str__(self): 
        prod = ["%s%s" % (c, SYM_DOWN_ARROW)  
            if isinstance(c, NonTerminal) else str(c)  
            for c in self.tree.children] 
        prod.insert(self.dot, SYM_DOT) 
        return "%s %s %s,  %r:%r" % (self.tree.root, SYM_RIGHT_ARRROW,  
            " ".join(prod), self.i, self.j) 
    def __eq__(self, other): 
        return (self.tree, self.dot, self.i, self.j) == ( 
                other.tree, other.dot, other.i, other.j) 
    def __ne__(self, other): 
        return not (self == other) 
    def __hash__(self): 
        if self._hash is None: 
            self._hash = hash((self.tree, self.dot, self.i, self.j)) 
        return self._hash 
    def is_complete(self): 
        """ 
        Returns True iff the dot is past the last child (thus the state  
        is complete) 
        """ 
        return self.dot >= len(self.tree.children) 
    def next(self): 
        """ 
        Return the next (first-level only) production of this tree,  
        or None if we've reached the end 
        """ 
        if self.is_complete(): 
            return None 
        return self.tree.children[self.dot] 
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class ChartItem(object): 
    """ 
    A helper object, associated with each chart state, that holds the reasons 
    for adding this state and the state's subtree builders 
    """ 
    UNPROCESSED = 1 
    PROCESSING = 2 
    PROCESSED = 3 
     
    def __init__(self, reason, subtreefunc): 
        self.reasons = {reason} 
        self.subtreefuncs = {subtreefunc} 
        self.subtrees = set() 
        # `stage` serves as a marker for get_subtrees() 
        self.stage = self.UNPROCESSED 
     
    def add(self, reason, subtreefunc): 
        """ 
        Adds a reason and a subtree-builder to this chart item 
        """ 
        self.reasons.add(reason) 
        self.subtreefuncs.add(subtreefunc) 
 
class Chart(object): 
    """ 
    Represents the parser chart. It comprises of states (without duplicates), 
    but it preserves the ordering relations for debugging purposes. With each 
    state we associates a ChartItem, to hold some extra info.  
    States are add()ed to the chart, but they don't actually become part of  
    it until commit()ted. This prevents some issues with dictionary iteration. 
    """ 
     
    def __init__(self): 
        self._states = {} 
        self._ordered_states = [] 
        self._changes = [] 
    def __iter__(self): 
        return iter(self._ordered_states) 
    def __len__(self): 
        return len(self._ordered_states) 
    def __getitem__(self, index): 
        return self._ordered_states[index] 
     
    def add(self, state, reason, subtreefunc = None, *args): 
        """ 
        Adds a new state to the chart, including the state's reason and  
        subtree-builder. Note that it's not actually added to the chart  
        until commit() is called 
        """ 
        if subtreefunc is None: 
            subtreefunc = BUILD_CONST 
            args = (state.tree,) 
        self._changes.append((state, reason, (subtreefunc, args))) 
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    def commit(self): 
        """ 
        commits the changes to the chart -- returns True if the chart 
        has grew, False otherwise 
        """ 
        added = False 
        while self._changes: 
            st, reason, subtreefunc = self._changes.pop(0) 
            if st not in self._states: 
                st.index = len(self._ordered_states) 
                self._ordered_states.append(st) 
                self._states[st] = ChartItem(reason, subtreefunc) 
                added = True 
            else: 
                self._states[st].add(reason, subtreefunc) 
 
        return added 
 
    def get_subtrees(self, st): 
        """ 
        Gets the set of subtrees for a given state; this is memoized (cached)  
        so once the subtrees of some state have been built,  
        future calls are O(1) 
        """ 
        item = self._states[st] 
        if item.stage == ChartItem.PROCESSED: 
            return item.subtrees 
        # make sure we're not accidentally reentrant 
        assert item.stage == ChartItem.UNPROCESSED 
        item.stage = ChartItem.PROCESSING 
        for func, args in item.subtreefuncs: 
            item.subtrees.update(func(self, *args)) 
        item.stage = ChartItem.PROCESSED 
        return item.subtrees 
     
    def show(self, only_completed = False): 
        """ 
        Print the chart in a human-readable manner 
        """ 
        for st in self._ordered_states: 
            if only_completed and not st.is_complete(): 
                continue 
            print "%3d | %-40s | %s" % (st.index, st,  
                " ; ".join(self._states[st].reasons)) 
        print "-" * 80 
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#============================================================================== 
# Tree extraction combinators:  
# 
# Whenever we add a new state to the chart, we associate with it a  
# subtree-builder, which serves us later (we get_subtrees() is called).  
# These builders combine partial trees to form bigger ones, according to  
# the rules of the grammar  
#============================================================================== 
def BUILD_CONST(chart, t): 
    return [t] 
 
def BUILD_PROPAGATE(chart, st): 
    return chart.get_subtrees(st) 
 
def BUILD_SUBSTITUTION(chart, st, st2): 
    return [t1.deep_substitute(st.dot, t2)  
        for t1 in chart.get_subtrees(st) for t2 in chart.get_subtrees(st2)] 
 
def BUILD_AUX(chart, st, st2): 
    return [t2.substitute_foot(t1)  
        for t1 in chart.get_subtrees(st) for t2 in chart.get_subtrees(st2)] 
 
#============================================================================== 
# Parser 
#============================================================================== 
def handle_left_adj(grammar, chart, st): 
    """ 
    handles the case of left-adjunction rules (2) and (3) 
    """ 
    if st.dot != 0: 
        return 
     
    # (2) 
    for t in grammar.get_left_aux_trees_for(st.tree.root): 
        chart.add(State(t, 0, st.j, st.j), "[2]/%d" % (st.index,)) 
     
    # (3) 
    for st2 in chart: 
        if (st2.tree.type == Tree.LEFT_AUX and st.tree.root == st2.tree.root  
                and st.j == st2.i and st2.is_complete()):  
            chart.add(State(st.tree, 0, st.i, st2.j),  
                "[3]/%d,%d" % (st.index, st2.index),  
                BUILD_AUX, st, st2) 
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def handle_scan(grammar, chart, st, token): 
    """ 
    handles the case of scanning rules (4), (5) and (6) 
    """ 
    prod = st.next() 
    if isinstance(prod, str): 
        if prod == token: 
            # (4) 
            chart.add(State(st.tree, st.dot+1, st.i, st.j+1),  
                "[4]/%d" % (st.index,),  
                BUILD_PROPAGATE, st) 
        elif prod == "": 
            # (5) 
            chart.add(State(st.tree, st.dot+1, st.i, st.j),  
                "[5]/%d" % (st.index,),  
                BUILD_PROPAGATE, st) 
    elif isinstance(prod, Foot): 
        # (6) 
        chart.add(State(st.tree, st.dot+1, st.i, st.j),  
            "[6]/%d" % (st.index,),  
            BUILD_PROPAGATE, st) 
 
def handle_substitution(grammar, chart, st): 
    """ 
    handles the case of substitution rules (7) and (8) 
    """ 
    prod = st.next() 
    if isinstance(prod, NonTerminal): 
        # (7) 
        for t in grammar.get_init_trees_for(prod): 
            chart.add(State(t, 0, st.j, st.j), "[7]/%d" % (st.index,)) 
         
        # (8) 
        for st2 in chart: 
            if (st2.tree.root == prod and st.j == st2.i and st2.is_complete()  
                    and st2.tree.type == Tree.INIT_TREE): 
                chart.add(State(st.tree, st.dot + 1, st.i, st2.j),  
                    "[8]/%d,%d" % (st.index, st2.index),  
                    BUILD_SUBSTITUTION, st, st2) 
  
def handle_subtree_traversal(grammar, chart, st): 
    """ 
    handles the case of subtree-traversal rules (9) and (10) 
    """ 
    prod = st.next() 
    if isinstance(prod, Tree): 
        # (9) 
        chart.add(State(prod, 0, st.j, st.j), "[9]/%d" % (st.index,))  
         
        # (10) 
        for st2 in chart: 
            if st2.tree == prod and st.j == st2.i and st2.is_complete(): 
                chart.add(State(st.tree, st.dot + 1, st.i, st2.j),  
                    "[10]/%d,%d" % (st.index, st2.index),  
                    BUILD_SUBSTITUTION, st, st2) 
 



 19 

def handle_right_adj(grammar, chart, st): 
    """ 
    handles the case of right-adjunction rules (11) and (12) 
    """ 
    if not st.is_complete(): 
        return 
     
    # (11) 
    for t in grammar.get_right_aux_trees_for(st.tree.root): 
        chart.add(State(t, 0, st.j, st.j), "[11]/%d" % (st.index,)) 
     
    # (12) 
    for st2 in chart: 
        if (st2.tree.type == Tree.RIGHT_AUX and st2.tree.root == st.tree.root  
                and st.j == st2.i and st2.is_complete()): 
            chart.add(State(st.tree, len(st.tree.children), st.i, st2.j),  
                "[12]/%d,%d" % (st.index, st2.index),  
                BUILD_AUX, st, st2) 
 
def parse(grammar, start_symbol, tokens, debug = False): 
    """ 
    The actual parser: it takes a TIG grammar object, a start symbol  
    (NonTerminal) of that grammar, and a list of tokens, and returns  
    (hopefully) all possible parse trees for them. 
     
    It works by first applying the initialization rule (1),  
    then applying rules (2)-(12) for as long as the chart keeps changing,  
    and once it's stable, it looks for matching states according to  
    acceptance rule (13). 
     
    It then takes all matching states (normally there should be only one), 
    extracts the trees of each state, and returns a set of them. 
     
    Note that TIG is assumed to be lexicalized, or at least finitely-ambiguous,  
    so we know the number of trees is bounded. 
     
    The parsing is done in O(|G|^2 * n^3), as discussed in the paper,  
    and tree extraction is performed in amortized linear time, per each tree. 
    """ 
    if isinstance(tokens, str): 
        tokens = tokens.split() 
    chart = Chart() 
    tokens = list(tokens) 
    padded_tokens = [None] + tokens 
     
    # (1) 
    for t in grammar.get_init_trees_for(start_symbol): 
        chart.add(State(t, 0, 0, 0), "[1]") 
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    # main loop: run (2)-(12) until no more changes occur 
    while True: 
        for st in chart: 
            handle_left_adj(grammar, chart, st) 
            tok = padded_tokens[st.j+1] if st.j+1 < len(padded_tokens) else None 
            handle_scan(grammar, chart, st, tok) 
            handle_substitution(grammar, chart, st) 
            handle_subtree_traversal(grammar, chart, st) 
            handle_right_adj(grammar, chart, st) 
         
        if not chart.commit(): 
            # no more changes, we're done 
            break 
 
    # (13) 
    matches = [st for st in chart if st.is_complete() and st.i == 0  
        and st.j == len(tokens) and st.tree.root == start_symbol  
        and st.tree.type == Tree.INIT_TREE] 
    if debug: 
        chart.show() 
        print "Matches:", [st.index for st in matches] 
        print 
 
    # fail if no matching state was found 
    if not matches: 
        raise ParsingError("Grammar does not derive the given sequence") 
     
    # extract trees, drop ones that do not generate the correct token sequence 
    trees = set(t for m in matches for t in chart.get_subtrees(m) 
         if list(t.leaves()) == tokens) 
     
    # and make sure we didn't lose all trees, for then it's our fault 
    assert trees 
    return trees 
 


